Buffering the pH of the culture medium does not extend yeast replicative lifespan

نویسندگان

  • Brian M Wasko
  • Daniel T Carr
  • Herman Tung
  • Ha Doan
  • Nathan Schurman
  • Jillian R Neault
  • Joey Feng
  • Janet Lee
  • Ben Zipkin
  • Jacob Mouser
  • Edward Oudanonh
  • Tina Nguyen
  • Torin Stetina
  • Anna Shemorry
  • Mekedes Lemma
  • Matt Kaeberlein
  • Cory Dunn
  • Karim Mekhail
چکیده

During chronological aging of budding yeast cells, the culture medium can become acidified, and this acidification limits cell survival.  As a consequence, buffering the culture medium to pH 6 significantly extends chronological life span under standard conditions in synthetic medium.  In this study, we assessed whether a similar process occurs during replicative aging of yeast cells.  We find no evidence that buffering the pH of the culture medium to pH levels either higher or lower than the initial pH of the medium is able to significantly extend replicative lifespan.  Thus, we conclude that, unlike chronological life span, replicative life span is not limited by acidification of the culture medium or by changes in the pH of the environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronological and replicative lifespan in yeast

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

Acetic acid and acidification accelerate chronological and replicative aging in yeast

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

Cyclin D1 goes metabolic

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

A role for protein phosphatase 4 in regulating non-homologous end-joining

Budding yeast is a preeminent model organism in studies of cellular aging pathways that are conserved in eukaryotes, including humans. There are two primary ways to query the lifespan of this organism.1 if one asks how many times a cell can divide, the answer will be its replicative lifespan (RLS). if, on the other hand, one asks how long a cell can stay alive without dividing, the answer will ...

متن کامل

Independent and Additive Effects of Glutamic Acid and Methionine on Yeast Longevity

It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2013